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Abstract 

Design history function (i.e., what an artifact was made for) is 
a central aspect of artifact conceptualization.  A generally 
accepted explanation is that design history is central because 
it is the root cause for many other artifact properties.  In Exp. 
1, an inference task allowed us to probe participants‘ causal 
models, and then to use them when making predictions for 
Exp. 2.  Design history was, in fact, part of what participants 
viewed as conceptually relevant.  Predictions for Exp. 2 were 
derived using the currently most comprehensive theory about 
how causal knowledge affects categorization.  Our results 
show that though participants used design history, functional 
outcome and physical structure to conceptualize artifacts, the 
effect of design history was independent from knowledge of 
physical structure and functional outcome.  This result is 
inconsistent with a causal knowledge explanation of design 
history‘s conceptual centrality. 

Keywords: categorization; causal reasoning; essentialism; 
artifacts. 

Introduction 

Imagine you inherited an antique sewing machine.  It comes 

in a beautiful cabinet, so you decided to use it in your living 

room as a table to display stuff.  Imagine now that a guest 

comments about the beautiful table.  A good bet is that your 

reaction would be to tell the visitor that the object is really a 

sewing machine cabinet, but that you currently use it as a 

table.  The general phenomenon illustrated here is that there 

is a preference to conceptualize artifacts according to what 

they were designed for (their design history function) rather 

than according to an alternative but current function.  First 

described by Lance Rips (1989), this is a robust 

phenomenon, valid across different paradigms (e.g., 

Chaigneau, Castillo & Martínez, 2008; Gelman & Bloom, 

2000; Defeyter, Avons, & German, 2007; Defeyter & 

German, 2003; Jaswal, 2006; Matan & Carey, 2001), age 

levels (Gutheil, Bloom, Valderrama, & Freedman, 2004) 

and cultures (German & Barrett, 2005). 

The favored explanation for this phenomenon is that it 

occurs because people view design history as the essence of 

artifacts (e.g., Bloom, 1996, 1998, 2007).  Medin and 

Ortony‘s (1989) psychological essentialism, holds that when 

someone categorizes objects, she focuses on what she 

knows (cognitively or metacognitively) about the cause of 

the object‘s apparent properties, more than she focuses on 

the apparent properties themselves.  An essence, in this 

view, is an often unobserved root cause that explains many 

of an entity‘s surface features (Ahn, Kalish, Gelman, Medin, 

Luhman, Atran, Coley, & Shafto, 2001).  Correspondingly, 

because the design history function can be reasonably 

viewed as the root cause of an artifact‘s physical structure 

and use, several authors have assumed that this is why 

people use design history function (and not current function, 

nor object appearance) for conceptualization (e.g., Matan, & 

Carey, 2001; Kemler-Nelson, Frankenfield, Morris, & Blair, 

2000; Asher & Kemler Nelson, 2008).  Importantly, in this 

view the relevance of the design history is a consequence of 

people‘s causal knowledge about artifacts. 

In the experiments we report here, we tested if the 

influence of the design history function is a case of causal-

based categorization.  If the centrality of design history is a 

consequence of people‘s causal knowledge, then its 

influence on category membership judgments should be 

consistent with documented effects of causal knowledge on 

categorization.  Of particular concern for us is the causal 

status effect phenomenon (Ahn, Gelman, Amsterlaw, 

Hohenstein and Kalish, 2000; Ahn, Kim, Lassaline, & 

Dennis, 2000; Meunier & Cordier, 2009; Rehder & Kim, 

2010), in which causes are more important that their effects.  

To make predictions about the design history‘s causal 

influence, we draw heavily on Rehder and collaborators‘ 

work about the influence of causal knowledge on 

categorization (i.e., the generative model; Rehder, 2003a, 

2003b, 2010; Rehder & Kim, 2006, 2010).  Our aim is not 

to test the generative model, but because this theory 

accounts for many different phenomena on causal 

categorization, our aim is to use it as a benchmark to assess 

if the conceptual relevance of the design history function 

can be explained as a causal-based categorization 

phenomenon.  If the conceptual centrality of design history 

function is explained by causal knowledge, people that use 

design history function to categorize should show telltale 

signs of causal categorization. 

Causal Influences on Category Judgments 

Rehder‘s research program identifies two routes for causal 

knowledge‘s influence on categorization (Rehder, 2010).  In 

the explicit route, people treat observed properties as 

evidence of unobserved properties, and then use these 

inferred properties for categorization judgments.  These 

inferences can be retrospective (e.g., knowing that A  B, 

using the known presence of B to infer the presence of the 

unobserved A, and then using this inferred A to categorize; 

1533



Rehder & Kim, 2009) or prospective (e.g., using the known 

A to infer the presence of B; Rehder, 2007; Chaigneau, 

Barsalou, & Sloman, 2004).  Our current Exp. 1 used a 

prospective reasoning task, allowing us to determine which 

information participants used to make their inferences. 

In contrast, in the implicit route, people estimate whether 

a configuration of known properties (i.e., an exemplar) 

could be generated by the category‘s implicit causal model.  

For example, if a category‘s implicit causal model is A  B 

 C, and if links are probabilistic, each successive property 

is generated with less certainty, and a causal status effect 

obtains (i.e., A is conceptually more central than B, and B 

than C).  In contrast, if links are deterministic, then all 

properties are equally certain and no causal status effect 

obtains (i.e., A, B and C are equally central).  In the implicit 

route, not only individual properties matter for 

categorization, but also combinations of properties.  Simply 

put, if two properties are causally linked, then they should 

be correlated (i.e., if one is present/absent, so is the other).  

For example, if people believe that having large wings 

causes birds to fly, then an animal that has small wings an 

flies is a poorer category member than an animal that has 

small wings and does not fly.  These interactions among 

properties have been found to have larger effect sizes than 

the effects of individual properties in categorization 

judgments (reviewed in Rehder, 2010).  Our current Exp. 2 

used an implicit reasoning task, allowing us to assess if 

causal reasoning could account for our data. 

Experiments’ Overview 

In the current experiments, participants were presented with 

scenarios describing a novel artifact‘s design history (H), its 

physical structure (P), an agent‘s goal when using the 

artifact (G), and the agent‘s action (A) (and the functional 

outcome (O), but only in Exp. 2), and asked to rate its 

category membership.  Exp. 1 used an explicit causal 

reasoning task.  Participants were provided with information 

about H, P, G and A (but not O), and we predicted that they 

would use the observed properties to infer the state of the 

unobserved property O, and then use that inferred property 

to categorize.  Results from this experiment allowed us to 

determine which information participants used for their 

inferences, and also to hone in on the implicit causal model 

they used.  In Exp. 2, we used an implicit causal reasoning 

task.  Participants were provided with information about H, 

P, G, A and O, and asked to rate category membership.  

Given our assessment of participants‘ implicit causal 

models in Exp. 1, the generative theory makes clear 

predictions about the relative weights of properties for 

category membership ratings.  Comparing our obtained 

pattern of results with theoretical predictions, allowed us to 

appraise whether participants were doing causal reasoning 

or not. 

On both experiments, we analyzed ratings using Rehder‘s 

regression method (2003a, 2003b, 2010).  In this method, 

participants provide category membership ratings for all 

possible property combinations, allowing the computation 

of individualized regression equations.  Participants in our 

experiments were presented with a category with causal 

knowledge regarding 5 binary valued properties.  H could 

describe the artifact being designed towards functionality x 

or functionality y.  P could be described as adequate to 

achieve functionality x, or not adequate to achieve it.  G 

could be described as intentional and coherent with 

functionality x, or accidental and not coherent with 

functionality x.  A could be described as coherent with 

functionality x, or not coherent with functionality x.  Finally 

(but only on Exp. 2) O could be described as achieving or 

not functionality x.  In consequence, participants in Exp. 1 

rated 2
4
=16 scenarios, and participants in Exp. 2 rated 2

5
=32 

scenarios.  The baseline scenario (i.e., all components 

coherent with functionality x) was always rated first.  

Because each participant provided 2
n
 data points for each 

variable, a regression equation for each participant was 

computed, with H, P, G, and A (plus O in Exp. 2) as 

predictors, and rating as criterion.  Regression coefficients 

for each participant were then used as individual data points 

reflecting the contribution of each predictor variable to the 

ratings. 

Experiment 1 

In this experiment, participants were provided with 

information about H, G, A and P.  No information was 

provided about O.  Because O is arguably the end node of 

an artifact‘s causal model, we predicted that participants 

would engage in explicit causal reasoning to infer O given 

the known information, and then use the inferred O to 

categorize.  From prior studies, we assumed that the causal 

model participants would use was H  P O  A  G 

(see Figure 1a).  This is the causal model obtained for 

scenarios similar to the present ones in Chaigneau, Barsalou 

& Sloman (2004; hereafter referred to as CB&S). 

 

H P

G A

O(a)

H P O(b)

H

P

O(c)

 
 

Figure 1: Panel (a) shows the predicted causal model for 

scenarios in Exp. 1.  Panels (b) and (c) show two possible 

causal models used by our participants, based on results for 

Exp. 1.  The dotted line in panel (c), reflects a weak causal 

link from H to O. 
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Because bayesian models (of which the generative model 

is one) predict that when P and A are specified (the 

proximal causes), they determine the state of O 

independently from the state of H and G (the distal causes), 

we predicted that P and A would show high regression 

coefficients, while H and G would show significantly lower 

ones (this was also one of the main results in CB&S).  In 

other words, we expected participants to respect the Markov 

condition in causal reasoning (Hausman & Woodward, 

1999).  Additionally, regression weights would inform us 

which properties participants used for their judgments. 

Method 

Design and Participants Twenty-four Adolfo Ibáñez 

undergraduates participated in this study (native Spanish-

speakers).  Participants were randomly assigned to one of 3 

artifacts and one of 4 pseudo-random order of scenarios. 

 

Materials  Three novel artifact categories were tested          

(―peinador‖, ―cazador de peces‖ and ―tatuador‖; 

respectively, ―hair-brusher‖, ―fish-catcher‖ and ―tattoo-

maker‖) and 16 scenarios for each category.  Each category 

was designed to afford two plausible functions, one serving 

as cue to name the artifact.  For example, the fish-catcher 

consisted of a net of vegetable fibers which could (in 

principle) be used both to catch fish or to carry stones.  The 

cue function was fixed across all scenarios so the question 

was always the same (e.g., Would you say that this object is 

a fish-catcher?).  Scenarios described one character that 

created an object and a second character that used it.  A 

graphic depiction of the artifact‘s physical structure was 

included in all scenarios.  As an example, Figure 2 shows 

the fish-catcher scenario specifying all elements as adequate 

(i.e., baseline).  When H was compromised, the designer 

created the object for one function, but the second character 

used it for a different function (e.g., a net designed to carry 

stones which is then used as a fish-catcher).  When P was 

compromised, the artifact‘s physical structure was described 

and depicted as not affording its cue function (e.g. a net 

with several holes on it).  When G was compromised, the 

second character‘s actions were described as accidental 

(e.g., the second character performed the appropriate actions 

but was playing and not intending to catch fish).  When A 

was compromised, the second character was described as 

not performing the appropriate actions (e.g., shaking the net 

just under the water‘s surface instead of keeping is stretched 

and still).  Thus, the 16 scenarios for each category 

presented participants with all combinations of adequate and 

compromised H, G, A and P. 

 

Procedure  Initially, participants received the instructions 

in writing but also heard them read aloud by the 

experimenter.  Later, participants worked individually.  

Participants received two training scenarios, which 

described the creation and use of a hammer.  One of these 

scenarios was a baseline (i.e., all properties adequate), and 

the second scenario presented the opposite extreme of the 

scale (i.e., all components compromised).  Ratings were 

performed on a 7-point scale, with 1 always reflecting the 

low-end (―no‖) and 7 the high-end (―yes‖) of the scale.   

 

 
In an ancient culture, a settler called Kne-Mû wanted to 

make an object to catch small fish living in large numbers in 

certain streams.  Because he didn‘t have an object to do that, 

he decided to make it.  The object consisted of a series of 

intertwined vegetable fibers.  On each side, the object had 

handles (as shown in the picture). 

 
One day, another settler called Knat-knê wanted to catch 

some small fish from a stream.  He found the object Kne-Mû 

made and thought that it would be useful for catching fish.  

Knat-knê grasped the object by both handles and kept it 

stretched just below the stream‘s surface. 

 

Question: Would you say that this object is a fish-catcher? 

 

 

Figure 2:  Baseline fish-catcher scenario in Exp. 1.  In Exp. 

2, the scenario also provided information about the event‘s 

outcome, by adding: ―As a result of the events described, 

fish in the stream were trapped in the vegetable fibers.‖) 

 

Results  To determine the importance of properties we 

analyzed participants‘ ratings by performing a multiple 

regression for each participant.  Four predictor variables 

were coded as -1 if the feature was compromised and +1 if it 

was adequate.  The regression weight associated with each 

predictor represents the influence that each element had on 

ratings.  Additionally 6 predictor variables represented the 

two-way interactions between the four elements.  Each of 

these was coded as -1 if a pair of elements had distinct 

values and +1 if they had the same value.  Note that in this 

method of analysis, participants provide category 

membership ratings for all possible property combinations, 

allowing the computation of individualized regression 

coefficients, but statistical tests are performed considering 

the coefficients‘ variance across participants (i.e., not the 

significance of the individual coefficients). 

Preliminary analyses showed that regression weights for 

the 6 interaction terms were not significant.  Because of this, 

the following analyses consider only the individual terms.  

Averaged regression weights over participants for H, G, A, 

and P are presented in Figure 3.  There were no effects of 

which object participants rated, or of which of the 4 pseudo-

random scenario orders participants received, and thus 

results were collapsed over these factors.  To test the 

differences between the regression weights given to H, G, A 

and P, an ANOVA with repeated measures was conducted 
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with individual terms (4 levels: H, G, A, P) as the single 

factor.  A violation of the sphericity assumption was 

handled by correcting degrees of freedom with Huynh-

Feldt‘s epsilon. Sphericity was addressed likewise in Exp. 2.  

For clarity of presentation, degrees of freedom are presented 

without adjustment here and elsewhere.  There was a main 

effect of individual terms (F(3, 69) = 9.61, MSe = .471, p < 

.001, R
2
 = .30, power = 1). 

Post hoc tests on the repeated measures factor (with 

Bonferroni adjustment), revealed that the regression weight 

associated with P was significantly greater than H, G and A 

(all ps < .05) and that the regression weight associated to H 

did not differ from those of G or A (both ps > .05).  Finally, 

t tests showed that only the regression weights for H and P 

were significantly different from zero (t(23) = 2.78, p < .05; 

t(23) = 4.98, p < .001, respectively). 

 

 
 

Figure 3: In Exp. 1, mean regression weights for history 

(H), agent goal (G), agent action (A) and physical structure 

(P).  Only P and H coefficients were significantly greater 

than zero.  Bars are standard errors. 

Discussion 

Results suggest that participants did not use model 1a, 

because G and A did not influence their ratings.  Because 

only P and H were significantly different from zero, taken as 

a group, participants appear to have used a model similar to 

1b or 1c.  The causal Markov condition predicts that in a 

chain model like 1b, the distal cause will exert less 

influence on the outcome than the proximal cause.  

Consistently with this prediction, results showed that the 

coefficient for P was greater than the coefficient for H 

(consistently with results in CB&S).  However, model 1c 

could also account for these results.  Lombrozo (2010) has 

proposed people can treat human intentions (e.g., the 

designer‘s intention) as metaphorical mechanisms of causal 

transmission.  Assuming that a metaphorical cause (H  O) 

has lower strength than a mechanical one (P  O), model 

1c could explain why P and H affected ratings, but H had a 

weaker effect.  Models 1b and 1c were used to generate 

predictions for Exp. 2. 

Experiment 2 

Exp. 2 assessed the importance of H, G, A, P and O on 

categorization judgments, now with an implicit causal 

reasoning task.  Because participants‘ ratings in Exp. 1 were 

not influenced by G nor A, we predicted that in Exp. 2 G 

and A would not show significant regression coefficients.  

Considering the model in Figure 1b, the generative model 

theory predicts that if participants interpret causal links as 

deterministic, the coefficients in the implicit reasoning task 

will be H = P = O.  On the other hand, if participants 

interpret causal links as probabilistic, the theory predicts 

regression weights H > P > O (i.e., a causal status effect).  

Considering the model in Figure 1c, and given that it has a 

weak causal link from H to O, the generative model theory 

predicts that participants should weigh less deviations from 

H‘s baseline value than from P‘s baseline value.  This 

prediction is derived because the weak causal link implies a 

small correlation between H and O, and therefore deviations 

from H‘s baseline value should have a lesser impact on 

ratings than deviations for P. 

Method 

Design and participants Thirty Adolfo Ibáñez and 

Tarapacá University undergraduates participated in this 

study (native Spanish-speakers).  Participants were 

randomly assigned to one of 3 artifacts and one of 5 pseudo-

random order of scenarios. 

 

Materials  Materials were the same of Exp. 1, except that 

information about the functional outcome was 

systematically manipulated.  When O was compromised, the 

outcome related to the cue function was described as not 

happening (e.g., for the fish-catcher artifact, fish were not 

caught in the net).  This meant that scenarios had 5 binary 

properties (H, G, A, P and O), and that participants provided 

2
5 
= 32 ratings. 

 

Procedure  The procedure was identical to that of Exp. 1. 

 

Results  Regression weights for the 5 individual terms and 

for the 10 two-way interaction terms were computed as 

described for Exp. 1.  Preliminary analyses revealed that 

regression weights for the interaction terms were not 

significant.  Regression weights averaged over participants 

for H, G, A, P and O are presented in Figure 4.  Again, there 

were no effects of neither which object participants rated or 

of the 5 pseudo-random scenario orders, and thus results 

were collapsed over these factors.  An ANOVA with 

repeated measures was conducted with individual terms (5 

levels: H, G, A, P and O) as the single factor, which 

revealed a main effect (F(4, 116) = 23.35, MSe = .30, p < 

.001, R
2
 = .45, power = 1). 
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Post hoc tests were conducted on the repeated measures 

factor (with Bonferroni adjustment).  This analysis showed 

that the regression weight associated with O was 

significantly different from G, A and P (all ps < .05) but not 

significantly different from H (p > .05).  Additionally, P was 

significantly different from G and A (both ps < .05), but not 

from H (p > .05).  The regression weight associated with H 

only differed from those of G and A (both ps < .05).  

Finally, t tests showed that only the regression weight of H, 

P and O were significantly different from zero (t(29) = 5.91, 

p < .001; t(29) = 3.53, p < .01; t(29) = 7.70, p < .001, 

respectively). 

 

 
 

Figure 4: In Exp. 2, mean regression weights for history 

(H), agent goal (G), agent action (A), physical structure (P) 

and outcome (O).  Only H, P and O were significantly 

greater than zero.  Bars are standard errors. 

 

Finally, we wanted to test if the pattern in Figure 4 

resulted from aggregating data from groups of participants 

who adopted different strategies.  It might be that a group of 

participants decided based on H and did not pay attention to 

O, while another group decided based on O and did not pay 

attention to H.  If this were true, we should find a negative 

correlation between H and O coefficients and two distinct 

groups of data points in the scatterplot (i.e., individuals with 

high coefficients for H and close to zero for O and vice 

versa).  This was not what data showed.  The correlation 

between H and O turned out to be negative but small and 

non-significant (r(28) = -.20, p = .29).  Visual inspection of 

the scatterplot revealed that 3 participants appeared to use 

the abovementioned strategies, but that a great majority of 

participants integrated H and O in their categorization 

judgments and exhibited individual patterns of coefficients 

similar to the aggregated pattern. 

Discussion 

As predicted, neither G nor A showed significant 

coefficients.  This lends support to our assumption that 

participants used the same information to make their 

judgments in both experiments. Coefficients for O were 

greater than coefficients for P, with H somewhere in 

between.  The significant difference between O and P, rules 

out the explanation that participants used model 1b with 

deterministic links, because this should produce that 

coefficients H = P = O.  At first glance, the relatively high 

coefficient for H could be interpreted as a causal status 

effect.  However, if participants used chain model 1b and 

interpreted links as probabilistic (which is a condition that 

could produce a causal status effect), the curve should show 

a negative slope, with H > P > O.  O‘s high coefficients 

speak against this account.  Model 1c does not fare better.  

This model predicts lower coefficients for H than for P, 

while results showed that H was nominally higher than P.  

For the sake of completeness, we considered one additional 

model.  Model 1c with two deterministic links could 

account for our results.  This model explains that O has a 

higher coefficient because, as it has 2 causes, it has a high 

probability of being generated, while P and H should have 

about equal weights.  However, recall that this last model is 

not consistent with Exp. 1‘s results, and so it is also unable 

to account for the complete pattern of results. 

Even further evidence for the absence of implicit causal 

reasoning in Exp. 2 is that prior research (reviewed in 

Rehder, 2010) finds that in the implicit causal reasoning 

task, interactions among properties account for a greater 

amount of variance than individual properties, while data in 

Exp. 2 did not show such interactions. 

In summary, we find very little evidence that our 

participants in Exp. 2 did causal reasoning, and yet, H was 

as conceptually central as O in their ratings.  This, we think, 

shows that design history function can have an important 

influence on categorization without traces of causal 

essentialist reasoning in particular, or causal reasoning in 

general. 

General Discussion 

As in CB&S, in Exp. 1 participants were not provided with 

descriptions of O, thus promoting prospective inferences.  

Consistently with results in CB&S, in Exp. 1 H lost 

relevance for categorization, presumably because it was 

partially screened-off by P, which was O‘s proximal cause.  

In Exp. 2, when—in contrast to Exp. 1 and to CB&S—

information about O was provided, H became at least as 

important as P for categorization.  Contrary to causal 

essentialism, this increased relevance of H does not 

correspond with known effects of causal knowledge on 

categorization. 

Simple heuristic processes are unlikely explanations of 

our results.  One alternative is that participants in Exp. 2 

categorized based on a simple property count.  Our data 

speaks against this alternative, given that participants 

consistently used some properties to guide judgments and 

disregarded others.  Another alternative is that participants 

in Exp. 2 categorized based on diagnostic properties.  We 

think this is not plausible.  There is no a-priori reason to 

think that some properties were more diagnostic than others.  

Think of a hammer as an example.  Using an object with a 
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hammering motion (i.e., A) appears to be at least as 

diagnostic of the hammer category as is achieving the goal 

of inserting nails (i.e., O).  Also, given that P was the most 

informative property in Exp. 1, one would expect that it 

would be at least as diagnostic as O, but this is not what our 

results in Exp. 2 showed. 

In conclusion, based on our participants‘ response pattern, 

the current work shows that the conceptual centrality of 

design history function is not easily explained by causal-

based categorization in general, nor by causal essentialism 

in particular.  Our results, especially those of Exp. 2, 

suggest that design history‘s contribution to artifact 

category membership follows an independent mechanism, 

and is not mediated by causal reasoning about the effect of 

physical structure on functional outcome. 
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